LAUNCH: How many triangles do you see? nested triangles—one triangle inside another Write "IN CLASS EXPERIMENT" in your notes Pick up a calculator and open a new Geometry document Open your book to page 308 and follow along # 4.10 Nested Triangles ## Objectives: - Investigate proportional relationships in nested triangles. - Investigate how lines parallel to a side of a triangle cut the other two sides. #### Part 1B Midpoints and Parallel Lines Use geometry software. Draw \overline{XY} . Construct a point A on \overline{XY} and a point B that is not on \overline{XY} . Draw \overline{AB} and construct its midpoint M. Drag point A back and forth along the entire length of \overline{XY} while tracing the path of point M. Drag point A along \overline{XY} . **3**. a. Describe the path traced by *M*. **b.** How does the path traced by point *M* compare to \overline{XY} ? Repeat the construction above. This time, instead of constructing the midpoint of \overline{AB} , place the point M somewhere else on \overline{AB} . How does the position of M affect the path traced by M? **5.** Use geometry software. Draw \overline{XY} . Locate a point *A* on \overline{XY} . Then construct three segments, each with A as an endpoint. Construct the midpoints M_1 , M_2 , and M_3 of the three segments. Move point A back and forth along \overline{XY} while tracing the paths of these midpoints. Describe the paths of the midpoints, including what you know about their locations and lengths. ## Minds in Action: episode 13 p.310 as Tony as Sasha #### Minds in Action episode 13 I like dragging points on the computer screen and watching Tony what happens. Me too. Triangle ADE and the ratios all got small when we dragged D close to A. And when we dragged D close to B, the two triangles were Tony almost the same, and the ratios were almost 1! The two triangles always had the same shape too. I think that Sasha happened because we constructed \overline{DE} parallel to \overline{BC} . Tony The parallel segment seemed to make everything work nicely. So, can we make a conjecture about what having a parallel Sasha segment like \overline{DE} does for the figure? Can we say something like "A parallel-to-one-side segment inside Tony a triangle makes two proportional triangles"? Sasha Hmm. I get the idea. I think we have to work on the wording. #### Part 2 Splitting Two Sides of a Triangle Use geometry software. Draw $\triangle ABC$. Place a point *D* anywhere on side \overline{AB} . Then construct a segment \overline{DE} that is parallel to \overline{BC} . Drag point D along \overline{AB} . Use the software to find the ratio $\frac{AD}{AB}$. - 7. Find two other length ratios with the same value. Do all three ratios remain equal to each other when you drag point *D* along \overline{AB} ? - **8.** As you drag D along \overline{AB} , describe what happens to the figure. Make a conjecture about the effect of \overline{DE} being parallel to \overline{BC} . #### **Definitions** In $\triangle ABC$ with D on \overline{AB} and E on \overline{AC} , \overline{DE} splits two sides proportionally $(\overline{AB} \text{ and } \overline{AC})$ if and only if $\frac{AB}{AD} = \frac{AC}{AE}$ You call the ratio $\frac{AB}{AD}$ the common ratio. #### The Parallel Side-Splitter Theorem $$\frac{AB}{AD} = \frac{AC}{AF} = \frac{BC}{DF}$$ #### The Proportional Side-Splitter Theorem $$\frac{AB}{AD} = \frac{AC}{AE} \Rightarrow \overline{DE} \parallel \overline{BC}$$ ## Examples: p.311 In Exercises 1–5, $\overline{DE} \parallel \overline{BC}$. **1.** If AD = 1, AB = 3, and AE = 2, what is AC? **2.** If AE = 4, AC = 5, and AB = 20, what is AD? **3.** If AD = 3, DB = 2, and AE = 12, what is EC? **4.** If AE = 1, AC = 4, and DE = 3, what is BC? **5.** If AD = 2 and DB = 6, what is the value of $\frac{DE}{BC}$?