LAUNCH: How many triangles do you see?

nested triangles—one triangle inside another

Write "IN CLASS EXPERIMENT" in your notes

Pick up a calculator and open a new Geometry document

Open your book to page 308 and follow along

4.10 Nested Triangles

Objectives:

- Investigate proportional relationships in nested triangles.
- Investigate how lines parallel to a side of a triangle cut the other two sides.

Part 1B Midpoints and Parallel Lines

Use geometry software. Draw \overline{XY} . Construct a point A on \overline{XY} and a point B that is not on \overline{XY} . Draw \overline{AB} and construct its midpoint M. Drag point A back and forth along the entire length of \overline{XY} while tracing the path of point M.

Drag point A along \overline{XY} .

3. a. Describe the path traced by *M*.

b. How does the path traced by point *M* compare to \overline{XY} ?

Repeat the construction above. This time, instead of constructing the midpoint of \overline{AB} , place the point M somewhere else on \overline{AB} . How does the position of M affect the path traced by M?

5. Use geometry software. Draw \overline{XY} . Locate a point *A* on \overline{XY} . Then construct three segments, each with A as an endpoint. Construct the midpoints M_1 , M_2 , and M_3 of the three segments. Move point A back and forth along \overline{XY} while tracing the paths of these midpoints. Describe the paths of the midpoints, including what you know about their locations and lengths.

Minds in Action: episode 13 p.310

as Tony

as Sasha

Minds in Action

episode 13

I like dragging points on the computer screen and watching Tony what happens.

Me too. Triangle ADE and the ratios all got small when we dragged D close to A.

And when we dragged D close to B, the two triangles were Tony almost the same, and the ratios were almost 1!

The two triangles always had the same shape too. I think that Sasha happened because we constructed \overline{DE} parallel to \overline{BC} .

Tony The parallel segment seemed to make everything work nicely.

So, can we make a conjecture about what having a parallel Sasha segment like \overline{DE} does for the figure?

Can we say something like "A parallel-to-one-side segment inside Tony a triangle makes two proportional triangles"?

Sasha Hmm. I get the idea. I think we have to work on the wording.

Part 2 Splitting Two Sides of a Triangle

Use geometry software. Draw $\triangle ABC$. Place a point *D* anywhere on side \overline{AB} . Then construct a segment \overline{DE} that is parallel to \overline{BC} .

Drag point D along \overline{AB} .

Use the software to find the ratio $\frac{AD}{AB}$.

- 7. Find two other length ratios with the same value. Do all three ratios remain equal to each other when you drag point *D* along \overline{AB} ?
- **8.** As you drag D along \overline{AB} , describe what happens to the figure. Make a conjecture about the effect of \overline{DE} being parallel to \overline{BC} .

Definitions

In $\triangle ABC$ with D on \overline{AB} and E on \overline{AC} , \overline{DE} splits two sides proportionally $(\overline{AB} \text{ and } \overline{AC})$

if and only if $\frac{AB}{AD} = \frac{AC}{AE}$

You call the ratio $\frac{AB}{AD}$ the common ratio.

The Parallel Side-Splitter Theorem

$$\frac{AB}{AD} = \frac{AC}{AF} = \frac{BC}{DF}$$

The Proportional Side-Splitter Theorem

$$\frac{AB}{AD} = \frac{AC}{AE} \Rightarrow \overline{DE} \parallel \overline{BC}$$

Examples: p.311

In Exercises 1–5, $\overline{DE} \parallel \overline{BC}$.

1. If AD = 1, AB = 3, and AE = 2, what is AC?

2. If AE = 4, AC = 5, and AB = 20, what is AD?

3. If AD = 3, DB = 2, and AE = 12, what is EC?

4. If AE = 1, AC = 4, and DE = 3, what is BC?

5. If AD = 2 and DB = 6, what is the value of $\frac{DE}{BC}$?

