6.2 & 6.3 Geometric and Arithmetic Means

Objective: To find and use relationships in similar right triangles.

arithmetic mean, or average of two numbers a and b is $\frac{a+b}{2}$

Example 2

Find the <u>arithmetic</u> mean of:

Geometric mean of two positive numbers a and b is:

$$\frac{a}{x} = \frac{x}{b}$$

$$x = \sqrt{ab}$$

$$2$$

$$4$$

$$3$$

$$9$$

$$4$$

$$16$$

$$5$$

$$25$$
Example 1
Find the geometric mean of:
$$3$$

$$4$$

$$6$$

$$8$$

$$64$$

$$a) 4 and 18$$

$$b) 15 and 20$$

$$9$$

$$81$$

$$X = \sqrt{4 \cdot 18}$$

$$X = \sqrt{20 \cdot (5)}$$

$$10$$

$$100$$

$$X = \sqrt{72}$$

$$12$$

$$144$$

$$X = \sqrt{30} \cdot 2$$

$$X = \sqrt{100 \cdot 3}$$

$$13$$

$$169$$

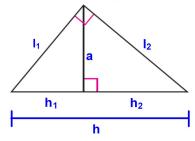
$$14$$

$$196$$

$$X = \sqrt{100} \cdot 3$$

$$15$$

$$225$$


What do you notice about the geometric mean compared to the arithmetic mean?

The Arithmetic-Geometric Inequality

 $arithmetic\ mean \geq geometric\ mean$

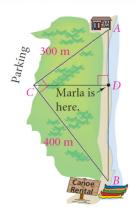
$$\frac{a+b}{2} \ge \sqrt{ab}$$

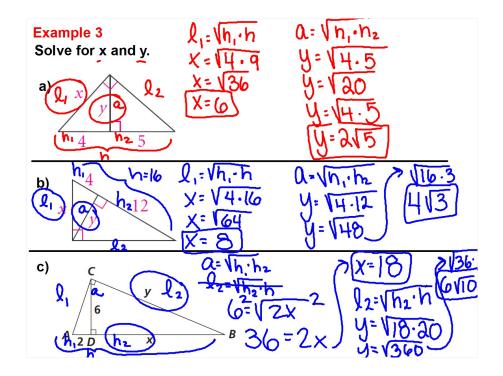
The altitude divides the triangle into 3 similar triangles.

$$a = \sqrt{h_1 \bullet h_2}$$

The altitude is the geometric mean of h₁ and h₂

$$l_1 = \sqrt{h_1 \bullet h}$$


The short leg is the geometric mean of h₁ and h


$$l_2 = \sqrt{h_2 \bullet h}$$

The longer leg is the geometric mean of h_2 and h

Example 4

Recreation The 300-m path to the information center and the 400-m path to the canoe rental dock meet at a right angle at the parking lot. Marla walks straight from the parking lot to the lake as shown. How far is Marla from the information center?

On Your Own

Worksheet 6-2 & 6-3 (1-5,8-12)