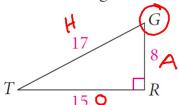


6.7 Some Special Ratios

Objective: To use the sine, cosine, and tangent functions and their inverses to find missing side lengths and angle measures in triangles.

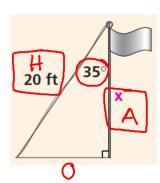

Trigonometry: The study of triangles dealing with the relationship between the sides and angles.

Trigonometric functions are sine, cosine, and tangent.

Example 1

Use the triangle to write each ratio.

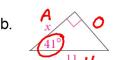
$$\mathbf{a.}\underline{\sin T} = \frac{8}{17}$$

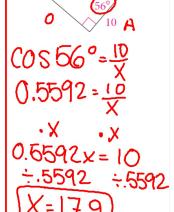

b.
$$\cos T = \frac{15}{17}$$

c.
$$\sin G = \frac{15}{17}$$

d.
$$\cos G = 8$$

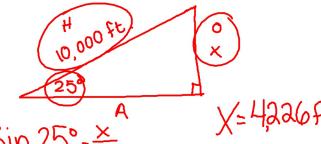
Example 2


a) A 20-ft wire supporting a flagpole forms a 35 degree angle with the flagpole. To the nearest foot, how high is the flagpole?

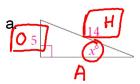

COS 35°=
$$\frac{x}{20}$$

0.8192 = $\frac{x}{20}$
.20 .20
 $x=16.384$

Find the value of x. Round answers to the nearest tenth.



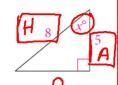
$$\frac{1}{1} = \frac{1}{11}$$

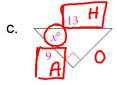

5. An airplane takes off and flies 10,000 feet in a straight line, making a 25° angle with the ground. How high above the ground does the airplane rise?

CAH-TOA

$$5in 25^{\circ} = \frac{\times}{10,000}$$

0.4226 = $\frac{\times}{10,000}$


Find the value of x. Round answers to the nearest degree. SOH-CAH-TOA


Sin x = 5

Sinx=0.3571

 $\cos X = \frac{5}{8}$

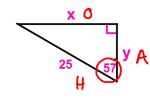
Cos x= 9/13

COS X = 0.6923

On Your Own

Page 478: 6

6. In $\triangle TUB$, $m \angle T = 90^\circ$, $m \angle U = 70^\circ$, and TU = 8 cm. Find the rest of the side lengths and angle measures.


Launch:

SOH-CAH-TOA

Find x and y.

Sin 57° =
$$\frac{x}{25}$$

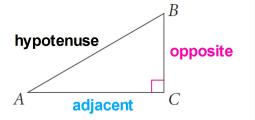
0.8387 = $\frac{x}{25}$

. 25 . 25

X=20.9675

$$\begin{array}{c} (08.57^{\circ} = \frac{y}{25}) \\ 0.5446 = \frac{y}{25} \\ 0.545 \\ 0.546 = \frac{y}{25} \\ 0.546 \\ 0.55 \\$$

Some Special Ratios

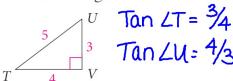

Objective: To use the sine, cosine, and tangent functions and their inverses to find missing side lengths and angle measures in triangles.

Trigonometric Ratios

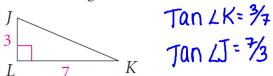
$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan A = \frac{\text{opposite}}{\text{adjacent}}$$

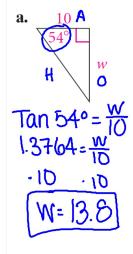


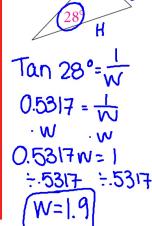
Soh-Cah-Toa

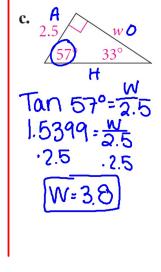

Some Old Horse Came A Hoppin Ihrough Our Alley

Example 1

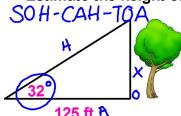
a) Write the tangent ratios for $\angle T$ and $\angle U$.




b) Write the tangent ratios for $\angle K$ and $\angle J$.



Example 2 Soft-CAH-TOA


Find the value of *w* to the nearest tenth.

d) To measure the height of a tree, Alma walked 125 ft from the tree and measured a 32 degree angle from the ground to the top of the tree. Estimate the height of the tree.

Tan
$$32^{\circ} = \frac{\times}{125}$$

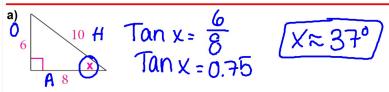
0.6249 = $\frac{\times}{125}$
· 125 -125

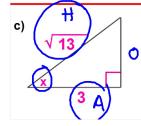
Find the value of x to the nearest tenth. SO H-CAH - TOA

a.

Tan 43° =
$$\frac{x}{12}$$

0.9325 = $\frac{x}{12}$

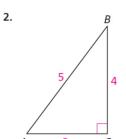

 $\begin{array}{c} \cdot |2 \\ \hline 11.2 = X \end{array}$


Tan
$$64^{\circ} = \frac{2}{7}$$

 $2.0503 = \frac{2}{7}$
 $14.4 = 2$

SOH CAH-TOA

Find x.



Cos X = 3

COSX= 0.8321 (X≈34°)

In Exercises 2 and 3,

- **a.** Find $\sin A$, $\cos A$, and $\tan A$ for each triangle.
- **b.** Find $\sin B$, $\cos B$, and $\tan B$ for each triangle.
- $\boldsymbol{c.}$ Which of your answers from parts (a) and (b) are the same? Explain.

Sin $A = \frac{4}{5}$ Sin $B = \frac{3}{5}$ Cos $A = \frac{3}{5}$ Cos $B = \frac{4}{5}$ Tan $A = \frac{4}{3}$ Tan $B = \frac{3}{4}$