Launch: Copy each figure and line of reflection, then draw the reflection image.

(Imagine the line is a mirror)

1.

2.

3

Transformations

The word transform means "to change."

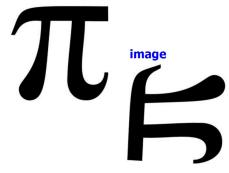
In geometry, a transformation changes the position of a shape on a coordinate plane.

There are three basic transformations:

- 1. Flip (Reflection)
- 2. Slide (Translation)
- 3. Turn (Rotation)

The original figure is called the <u>preimage</u>. The resulting figure is an <u>image</u>.

preimage



Objectives:

To model the composition of reflections over intersecting lines and classify the resulting transformation as a rotation.

To understand properties of reflection in the plane.

To identify fixed points for a given reflection or composition of reflections.

Definition

A point that is its own image after a transformation is a fixed point.

You have seen what happens when you reflect a point over one line. What happens when you reflect a point over one line and then reflect the image of that point over a second line?

A figure that reflects onto itself over a line has line symmetry.

- 6. Draw another letter F and lines r and s, but this time, r and s should intersect.
- 7. Reflect F over r. Refer to this image of F as F
- 8. Reflect F' over s. Refer to this image of F' as F"
- 9. Are there any fixed points?
- 10. Is there a transformation (not necessarily a reflection) that describes the change from F to F"?

Rotation (Turn)

In-Class Experiment: In your notes

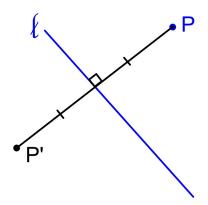
1. Draw 2 parallel lines and label them r and s. Also, draw the letter F. This is the preimage.

- 2. Reflect F over r. Refer to this image of F as F'
- 3. Reflect F' over s. Refer to this image of F' as F"
- 4. Are there any fixed points?
- 5. Is there a transformation (not necessarily a reflection) that describes the change from F to F"?

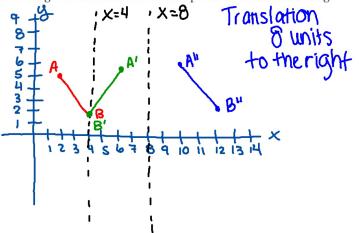
Translation (Slide)

Definition

Suppose P is a point and ℓ is a line not containing P. A reflection over ℓ maps the point to P' such that ℓ is the perpendicular bisector of $\overline{PP'}$. If ℓ contains P, P is its own reflection image.



- **2. a.** Reflect \overline{AB} with endpoints A(2, 5) and B(4, 2) over the line with equation x = 4. Write the coordinates of the image. A'(6,5) B'(4,2)
 - b. Now reflect the image of \overline{AB} over the line with equation x = 8. Write the coordinates of this new image. $A^{\text{u}}(0,5)$ $B^{\text{u}}(2,2)$
 - **c.** Describe a single transformation that maps \overline{AB} onto the final image.



- **7. a.** Reflect \overline{AB} with endpoints A(1,2) and B(3,3) over the line $y=\frac{1}{2}$. Write the coordinates of the endpoints of the image.
 - **b.** Now reflect the image of \overline{AB} over the line y = -1. Write the coordinates of the endpoints of this new image.
 - **c.** Describe a single transformation that maps \overline{AB} onto the final image.

On Your Own

Page 543: 7, 10-12

10. Standardized Test Prep Reflect point R(2, -3) over the line y = x. What are the coordinates of the reflection image of point R?

A.
$$(-2, -3)$$

C.
$$(-3, 2)$$

In Exercises 11–14, you are given an equation and its graph. Decide whether each graph has any lines of symmetry. Prove your conjecture.

11.
$$y = |x|$$

