Launch:

Vocabulary:

translation - a transformation that slides a graph or figure horizontally, vertically, or both without changing the size or shape of the graph

composition - a transformation that is equivalent to performing the first transformation and then performing the second transformation on the image of the first.

7.3 Translations

Objective:

To model the composition of reflections over parallel lines and classify the resulting transformation as a translation.

To model translations in the plane, with and without coordinates.

To understand properties of reflection and translation in the plane.

For Discussion

1. How can you describe the transformation that maps *ABCD* onto *A'B'C'D'*?

How are the arrows related? Explain.

Oarallel & Congruent

Developing Habits of Mind

Write a description. The coordinate plane gives you an algebraic way to describe a translation. The diagram shows a translation of a quadrilateral.

Here, you "add" (7, 2) to each point of the preimage to get the image.

In general, a translation on the coordinate plane is a transformation that adds one value to every *x*-coordinate of the preimage and another (possibly the same) value to every *y*-coordinate of the preimage. In symbols,

the same) value to every y-coordinate of the preimage. In symbols, notation for transformations $(x, y) \mapsto (x + a, y + b)$ where a and b are any real numbers. This notation describes a mapping. You say, "The translation (a, b) maps (x, y) to (x + a, y + b)."

For You to Do

Graph a scalene right triangle. Find its image after applying each rule.

- 2. $(x, y) \mapsto (x + 8, y + 5)$ Translation: Sunits right, 5 units UP
- 3. $(a,b)\mapsto (a-8,b+5)$ Translation: 8 units left, 5 units up 4. $(a,b)\mapsto (-a,b)$ Respection Over y-axis
- **5.** $(x, y) \mapsto (x + 1, y + 2)$
- **6.** $(x, y) \mapsto (x, -y)$

Which rules are translations? What are the other rules?

2. Apply the rule $(x, y) \mapsto (x + 10, y + 6)$ to the vertices of a triangle. Then connect the three image points. What figure do you get? How is it related to your original triangle?

Check Your Understanding

- **b.** Describe the translation.
- **c.** Describe what you have to do to the coordinates of the vertices of AKLJ to get the coordinates of the vertices of A'K'L'J'.

On Your Own

Page 552: 4, 5

- **4.** Graph \overline{AB} with endpoints A(1, 2) and B(2, 5).
 - **a.** Reflect \overline{AB} over the line x = 3. Call its image $\overline{A'B'}$.
 - **b.** Reflect $\overline{A'B'}$ over the line x = 6. Call its image $\overline{A''B''}$.
 - **c.** Find the coordinates of A', B', A'', and B''.
 - **d.** Is there a single mapping that sends \overline{AB} onto $\overline{A''B'''}$? If so, describe it. If not, explain why not.
- **5.** Use coordinate methods to show that quadrilateral AA''B''B in Exercise 4 is a parallelogram.